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Abstract-We have studied the morphological stability of a propagating domain wall separating
two uniformly deformed regions of a ferroelastic material undergoing plane strain deformations.
Following the literature, the strain energy density for the ferroelastic material is assumed to be a
sum of three functions: one quadratic in the shear strain, the second quadratic in the dilatational
strain and the third a Landau-type nonlinear function of deviatoric normal strains. The general
equations for linearized morphological stability of a planar propagating interface are derived. It is
shown that the propagating planar domain wall is stable against infinitely long-wave perturbations.
To examine the relationship between the morphological stability and the propagating speed, we
consider a special class of ferroelastic materials and show that there is a critical value m* such that
the steadily propagating domain wall is stable for m < m*, where m = pV6/Jl; P, Jl and Va equal
respectively the mass density, shear modulus and the propagation speed of the interface.

I. INTRODUCTION

A ferroelastic material (Aizu, 1969) is one that exhibits, in the absence of external mech
anicalloads, two or more stable states characterized by different spontaneous strains, and
the material in one stable state can be transformed into the other stable state by applying
mechanical loads. Phase transformations in such materials have been studied by using the
Ginzburg-Landau theory, wherein the material response was assumed to be nonlinear in
the deviatoric part of the deformation but linear in the dilatational and shear deformations
[e.g. see Barsch and Krumhansl (1988) and Jacobs (1985, 1992)]. They found soliton-type
domain walls corresponding to the first-order dilationless and shearless phase trans
formations. When all coefficients of the strain gradient terms vanish, i.e. when the Ginzburg
Landau model reduces to the Landau model, these domain walls reduce to the planar
surfaces separating two stable uniformly deformed regions. This is somewhat akin to the
directional solidification process studied by Mullins and Sekerka (1964), Langer (1980)
and Godreche (1993), wherein a moving planar interface separates the solid and liquid
regions. It can become morphologically unstable and then develop into a cellular or
dendritic pattern. Therefore, to delineate the physical admissibility of the solutions obtained
by Barsch and Krumhansl (1988) and Jacobs (1985, 1992), their morphological stabilities
should be examined. To our knowledge this has not been studied. We note that a planar
interface is said to be morphologically stable if infinitesimal geometric perturbations of its
planar form die out in time.

The study of the stability of phase transformations is generally difficult. As one of few
examples, Magrari (1983) has studied the "energetic stability" of the one-dimensional
soliton-type solution for the Ginzburg-Landau model of shape memory alloys. Here, we
employ the Landau model and use Mullins and Sekerka's method [e.g. see Mullins and
Sekerka (1964), Godreche (1993) and Langer (1980)] to study the morphological stability
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of a propagating interface or a domain wall separating two stable uniform phases of these
ferroelastic materials, with emphasis on the relationship between the stability and the
propagation speed.

The propagation of the interphase boundary has been studied for one-dimensional
shape memory alloys (Falk and Seibel, 1987), for one-dimensional solids (James, 1980;
Hutchinson and Neale, 1983; Coleman, 1985), and for two-dimensional elasto-plastic
materials (Fager and Bassani, 1986; Tugcu and Neale, 1987). For materials undergoing
martensitic transformations, Nishiyama (1978) has pointed out that the morphology of the
interface between two phases is related to its propagation speed. Here, we present a
quantitative analysis of the morphological stability of propagating domain walls in fer
roelastic transformations discussed in Barsch and Krumhansl (1988) and Jacobs (1985,
1992).

The general equations for linearized morphological stability of a planar propagating
interface are derived. For the sake of simplicity, we focus on a special class of ferroelastic
materials, for which it is found that there is a critical value m* of m = p V6/ fl, where p is
the mass density, Va the propagating speed and fl the shear modulus, such that the domain
wall is morphologically stable for m < m* and is unstable for m > m*. Thus, this example
shows that the morphological stability of the propagating domain wall in ferroelastic
transformations is determined by its propagation speed.

2. BASIC EQUATIONS

We use rectangular Cartesian coordinates x to study two-dimensional, infinitesimal,
plane strain deformations of an elastic body and, therefore, neglect the effect of the change
of configuration during phase transition. Three non-zero components Gij of the infinitesimal
strain tensor !;; are related to the displacement y by

[;" = (u i ! + ui,)/2, i,j == 1,2, (I)

where a comma followed by an index j indicates partial differentiation with respect to Xj'

Following Barsch and Krumhansl (1988) and Jacobs (1985, 1992), we assume that the
strain energy density W can be expressed as

(2)

where

(3)

A and B are positive material constants. and F (.) is a Landau-type nonlinear function of
'12 such that its derivative,

(4)

is a "rising-falling-rising" function of '12, as shown in Fig. I. We assume thatf(1]2) = 0 has
at least two roots located on the rising (stable) parts of the curve. We note that Barsch and
Krumhansl (1988) and Jacobs (1985, 1992) included strain gradient terms in the expression
for the strain energy density to describe the structure of the interface, and employed it to
study phase transformations in Nb3Sn. V3Si and In-TI alloys.

From the expression (2) for the strain energy density, we obtain the following for the
components (Jil of the stress tensor q:
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With eqns (5), the equations expressing the balance of linear momentum become

where p is the constant mass density and a superimposed dot indicates partial differentiation
with respect to time t.

3. STEADY SHOCK WAVES

Ferroelastic materials described by egn (2) can exhibit a shock wave-like deviatoric
transformation for which a propagating planar interface (domain wall) separates two
uniformly deformed regions.

Barsch and Krumhansl (1988) and Jacobs (1985, 1992) have provided motivations for
studying dilatationless and shearless steady shock wave solutions for which 112 is piecewise
constant. We also study dilatationless and shearless steady shock waves. Thus,

11; = 0, i = I, 2, (7)

11 I = 11 3 = 0, and '12 = const. (8)

Let the normal to the interface which propagates at the constant speed Vo make an angle
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Fig. 2 Propagating domain wall.

o with the xl-axis, as shown in Fig. 2. In the fixed (Xl' X 2, t) frame, the equation of the
moving interface is

where

m = -ctgO.

(9)

(IO)

The shock wave divides the deforming region into two uniformly deforming regions. That
is,

'12=EJ, '11=0, '13=0 in region I

'12 = E 2 , '11 = 0, '13 = 0 in region II,

(11)

(12)

where regions I and II are, respectively, behind and in front of the shock wave. The
displacements in these regions are given by

in region I, and

UI = E 1(X 1 - VotcosO)/2+F1(X2 - VotsinO)+G,

U2 = - E l (X2 - Vol sin 0)/2 - F I (Xl - Votcos G) + G2

U 1 = E2(x, - VotcosO)/2+F2 (X2 ~ VolsinG)+Hl

u2 = -E2(X 2- VotsinG)/2-F2(x l - VotcosO)+H2

(13)

(14)

in region II. Of the eight constants E l , F I , G" G2, E 2, F2, H, and H 2, E I and E2 are
determined by the jump conditions across the shock wave.

We assume that displacements are continuous across the shock wave, i.e.

[U,] = 0 atthe interface, (15)

where [I] = r -r, f+ andr being the values off on the positive and negative sides of
the interface. When E I i= E2 , the jump condition (15) is satisfied if and only if

m 2 = 1. or sinG = ± 1/)2. (16)

Thus, the positive normal to the steady shock wave must make an angle of 45° to the
horizontal axis. Jacobs (1985, 1992) obtained this result by using a different argument.
When eqn (16) holds, constants F, and F2 are related by
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(17)

Without loss of generality, we assume henceforth that m in eqn (10) equals -1 and
introduce a new coordinate system XI' X 2 attached to the propagating interface by

XI = (XI +x~)/fi-Vat

X 2 = (x 2 -XI )/fi· (18)

In the new frame (Xj, X 2 , t) the shock wave appears stationary. The displacement com
ponents Vi with respect to Xi are related to Ui by

(19)

and 11 b '12 and '13 are given by

where a comma followed by an index) indicates partial differentiation with respect to Xi'
By requiring that VI and V 2 vanish at the interface Xl = 0, we obtain the following

from eqns (13) and (14):

VI = 0, V 2 = -EIXJ for XI < 0

VI = 0, V 2 = -E2 X I for XI > O. (2Ia,b)

Therefore, XI = 0 is a propagating planar interface separating two uniformly deformed
regions. It may become morphologically unstable and then develop into a complicated
pattern.

The main objective of this paper is to study its morphological stability. In order to do
that we first derive jump conditions across the steadily propagating interface.

Writing the equations of motion (6a) and (6b) in the (Xj, X 2, t) frame and using the
Rankine-Hugoniot conditions [e.g. see Falk and Seibel (1987) and Abeyaratne and Know
les (1991)J, we arrive at the following:

(22)

(23)

Here, v is the local speed along the XI-direction of the steady shock wave. The balance of
total internal energy requires that

- v[W+p«U I - VaV 1 d 2 + (U2 - Va V2,I )2)/2] =

[(BI13 +2AI1I)(UI - VaV 1I )-f(I12)(U2- VaV2,1)]. (24)

We note that the jump conditions (22)-(24) are exactly valid for the straight interface
Xl = const.

For the steady shock wave, eqns (21), (23) and (24) reduce to

(25)

(26)

from which we obtain the so-called "equal area" condition:
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(27)

When Ip V~ I « 1, eqns (25) and (26) imply that

(28)

(29)

where 1:0 equals the externally applied load. Equation (29) is the classical "Maxwell Rule"
[e.g. see Ericksen (1975)].

On the stress f(e)-strain e curve shown in Fig. I, let the straight line joining states
(E1,/(EI»and (E2,/(E2) subtend an angle e with the horizontal axis. Then,

tane = pV~

follows from eqn (25). From the figure, we conclude that

(30)

which impose an upper limit on the speed of propagation of the interface.

4. MORPHOLOGICAL STABILITY OF THE PROPAGATING INTERFACE

We now use the Mullins and Sekerka (1964) method to study the morphological
stability of the propagating interface. Accordingly, we consider infinitesimal perturbation,

(31)

of the interface XI = 0 in the reference frame (Xl, X 2 , t) where band k are constants with
Ibl « 1, and w is the rate of change of the pertubation. Therefore, the perturbation will
decay and the interface will be stable if Re(w) < 0, and for Re(w) > 0 the pertubation will
grow and the interface will become unstable. The linearized version of equations of motion
(6) are

2p(U I -2VoUI.I + V~Ul.Il) = 2F(£.)U I .22 + (B+4A)UI.I I + (2F(E;) +4A-B)U2• 12

(32a)

(32b)

where

F(E.) = F(E I ) for XI < X*

F(E,) = F(E2 ) for XI > X*.

Equations (32) are uncoupled if

2F(£.)+4A-B= O.

However, such a condition may not generally be satisfied.
The steady state solution (21) for Xl < X* should be replaced by

(33)

(34)
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(35)

where u] and U2 are of order (5. In order to get forms of u] and 112 , we first examine their
eigensolutions. Let

(36)

where A; and B; are i.-dependent coefficients. Substituting from eqn (35) into eqns (32),
and recalling eqns (33), we obtain

(2p(d - 2w Voi. + V~i.-') + 2/'(£1 )k2~ (4A + B)i.-' )A; + (4A - B+ 2f'(E) »/.kB). = 0

(37)

(4A -B+2f'(Ej»AkAi. = O. (38)

The requirement that eqns (37) and (38) have a nontrivial solution yields a fourth-order
equation,

[4A - B+2/'(£])f i.' 1-;.= +:2p(u/ ~2(1)Voi.+ V~i.-')

+ 2j'(£] )k 2~ [4A + B]i.2: :2p(w 2- 2w Vo/.+ V5;.2) -2j'(EJlA2 + [4A + B]k2
} = 0,

for the determination of i.. Having found i., we can use either eqn (37) or (38) to ascertain
A;!B;. Thus, assuming that two eigenvalues p and r with Re(p) > 0, Re(r) > °are admiss
ible, eqns (35) should be of the form

(39a)

Similarly, in the region ,.\:'] > X*, the steady-state solution (2Ib) should be replaced by

L] = (/le I/\i+l/Je ,xi)sinkX2 elOl (40a)

(40b)

where q and s are determined by the following fourth-order algebraic eigen-equation:

[4A - B+ 2j'(£2W 11 2 k= + :2p«(t)2 + 2w Vol1 + V5112)

+ 2/'(£2 )k 2- [4A + B]I)': :2p(w2+ 2(') Ie'., I) + V51)2) - 2f'(E2}1]2 + [4A + B]k2 } = O.

Here,~, ex, [3, p, <p, (fJ, l/J, If; and <5 are unknown constants, and p, q, rand 5 are determined
from two analogous fourth-order equations with the constraints

Re (p) > 0, Re (q) > 0, Re (I') > ° and Re (5) > 0, (41)

where we have assumed that the boundary conditions at infinity are not perturbed. Sub
stitution from eqns (39) and (40) into eqns (32) yields

SAS 32/23-(
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[2p(w2-2wVop+ V~p2)+2j'(EI)k2- (4A +B)p2]ot = - (4A -B+2j'(EI))pkti

[2p(w 1-2wVor+ V6r1) -2j'(EI)r
2 + (4A +B)k2 ]ep = (4A -B+2j'(Et ))rkrp

[2p(w 2 +2wVoq+ V6q2)+2f'(E1)k1-(4A+B)ql]f3 = (4A-B+2f'(E1))qkP

[2p(w 1+2wVos+ V6S2) -2j'(E1)S2 +(4A +B)k1]1jJ = - (4A -B+2j'(E2 ))skl{J. (42)

The remaining five equations for ot, 13, ep, IjJ and 6 are derived from the five jump conditions
at the interface.

For infinitesimal perturbations (31) of the interface and of the corresponding solution
(39) and (40), we make the following observations.

(a) Let ebe the infinitesimal angle that the unit local normal g to the interface
XI = X*(X1, t) makes with the positive XI-direction. Then,

, oX*
e=~aX1

ax, = cosean+sineae

ex, = cosOae-sinean

cosO ~ I +0(6 2
), sine = 0(6);

e is a unit vector tangent to the interface.
Furthermore,

A oX*
sin e~ ~. = - ko sin kX2 ewr

•

aX2

(43)

(44)

(b) The local speed, v, which essentially equals the normal speed Vn because of eqns
(43), is given by

(45)

Substituting from eqns (39) and (40) into the jump conditions (15), (22)-(24) and keeping
in mind eqns (43)-(45), we arrive at the following:

C(+<jj = /j+1{J

(E I-E2 )6 = a+ep-p-1jJ

(4A + B-2p V6)(pC(+rrp + qf3 + sl{J) = (4A - B+2p V6)k(a+ ep- P-1jJ)

j'(EI)[(pa + rep) +k(Ct+ rp)] +.t (E1)[(qP +sljJ) -k(f3 + I{J)]

+2wpVoUi+ep-P-IjJ)-pV6(pa+rep+qp+sljJ) = 0

wp Vo(E I + E1)(ri + ep - P-1jJ) -k(C( + rp)[f(E1 ) -f(E2 )] - p V6[E t (pri + rep) + E2 (qp +sljJ)]

+EJ'(Ed[pri+rep+k(ot+rp)]+EJ"'(E1)[qP+sljJ-k(f3+I{J)] = O. (46a--e)

We note that 2p V6k(ri + ep - P-1jJ) on the right-hand side of egn (46c) is the only additional
term that appears when the straight interface XI = 0 is replaced by an infinitesimally curved
interface X* (X2 , t). Substitution for a, P, rp and I{J from egns (42) into egns (46) yields five
equations for five unknowns Ct, 13, ep, IjJ and 6. From the condition for the existence of a
nontrivial solution of these equations, we obtain an expression for w which determines the
stability of the straight interface.
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As mentioned before, our interest is to examine the dependence of interface stability
on the propagation speed. For simplicity, we study this problem with an example. As has
been assumed by Aizu (1969), among others, the dependence of the modulusI' (e) == df/de
upon the strain and also the change in its values during phase transformations are negligible.
Therefore, we assume a trilinear material with two rising stable branches of equal slope:

as shown in Fig. 3, and consider a ferroelastic material for which

B+4A = 21'(£) = 2fl·

(47)

(48)

We note that it is not too severe a restriction upon the material parameters. For materials
satisfying eqn (48), equations for A. and Yf reduce to

2p(w2-2wVOA+ V~},2)+2flk2_(4A+B)A2= ±i(4A-B+2fl)Ak

2p(w2+2wVoYf+ V~Yf2)+2flk2 - (4A +B)Yf2 = ±i(4A -B+2fl)Yfk, (49)

where p and s correspond to the" -" sign and rand q to the" +" sign on the right-hand
side. The comparison of eqns (49) with eqns (42) yields

Define n by

a=irx., P=i!3, <1>=irp, If;=il/J.

n = (4A -B)/2fl = (4A -B)/(4A +B),

(50)

(51)

where the second equality follows from eqn (48). Since A and B are positive numbers,
therefore

(52)

From eqns (46) we derive the following eigen-problem for rx., rp, !3 and ljJ:

rx.+<1> = !3+lf;

(pa+rrp-qp-sljJ) + 2k(rx. + <1» = 0

(2wp Vo+ ikp V~ +nflki)(pa +qP) = (2wp Vo - ikp V~ - inj1.k)(rqJ +sljJ)

(2wpVo-ikpV~ -inj1.k)(a- P) + (j1.- PV~)(pa+qp) = O. (53a-d)
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Since eqn (53d) involves only Ii and p, to obtain the eigen-condition it is sufficient to derive
another equation for Ii and p. This can be obtained from eqns (53) with the following
result :

Ii [2wp Vo(2r(s+p) + 2ik(p - r)) - 2ik(nfJ. + PV~)(p+ r)(s- ik)] =

P[2wp Vo(2s(r+q) + 2ik(s-q)) - 2ik(nfJ. + pV5)(q+ s)(r+ ik)]. (54)

The necessary and sufficient condition for eqns (53) and (54) to have a nontrivial
solution is that

2wp Vo(rp-sq+ ik(p-r+q-s)) + ik(nfJ. + p V~)(qr-ps+ ik(p+q+r+s)) =

(fJ. - p V~)(pq(r+s) + rs(p+q) + ik(ps-rq)), (55)

where the constants p, q, rand s depend upon w through eqns (49). From eqns (49) we
obtain

where

2(pV~ -fJ.)r = 2wpVo+i(l +n)fJ.k-A

2(p V~ - fJ.)s = - (2wp Vo+ i(l +n)fJ.k) - A
2(pV~-fJ.)p = 2wpVo-i(l+n)fJ.k-~

2(p v~ - fJ.)q = - (2wp Vo- i(l + n)fJ.k)-~,

L1, = (2wpVo+i(l+n)kfJ.)2-4(pV~-fJ.)(pw2+fJ.P)

L1 2 = (2wpVo-i(l +n)kfJ.)2-4(pV~-fJ.)(pw2+fJ.k2),

(56)

(57)

and in taking the square-root of L1, and L12 in eqns (56), roots with the positive real parts
are kept.

It is important to note that the necessary and sufficient conditions for the existence
and uniqueness of four roots p, q, rand s of eqns (56) are that

(58)

From eqns (55)-(57), we can derive

(~+A)[2(pV~-fJ.)(pW2+P(fJ.-pV~-nfJ.))+~A] =

4iwpVok(pV~-fJ.)(A-~). (59)

Thus, if w satisfies eqn (59), then (-w) also satisfies it. Multiply eqn (59) by
(A- ~), cancel the common factor w, and after some simplification we arrive at
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(m+n)J(fimn+ i(l +n))2 -2(m-l)(n+2)J(j2mn-i(1 +n»2 -2(m-I)(O+2)

= (l-m)(I-n)(2m-O+n-l), (60)

where recalling eqns (30) and (47),

(6Ia,b)

and the square-root is to be understood as the square-root of the positive real part. Squaring
both sides of eqn (60), we get a quadratic equation in n whose solution is

(l-n)2(l-mf(2m+n-I)+2(n+m)2[4(I-m) + (2m-I)(l +n)2) ±(n+m)(1+n)jA

(l-n)2(l-m)2 -4(n+m)2

(62)

where for I > m ;?: 0 and I ;?: n ;?: -I,

d = 16m(l-m)(n+m)2[4- (I +n)2) +8m(l-n)2(I-m)2(2m+n-l)

+ (l-n)4(l-m)2 ;?: O. (63)

Equations (62) and (63) imply that n is always a real number. We emphasize that the
admissible root w obtained from eqn (62) must satisfy the original eqn (59) and the
restrictions (58). In particular, the nonexistence of such a root implies stability.

In order to study the stability of the interface, we first note that for m = 0, eqn (62)
gives

n = (n 2 -I) ~ O. (64)

The inequality follows from (52). From egn (6Ia), we conclude that w is pure imaginary
and, thus, the static interface is morphologically stable. For m = I,

and, again, the interface is morphologically stable. Loosely speaking, we may say that the
interface is stable when m is sufficiently small or sufficiently close to I.

Since n is a real number, the stability of the interface changes at the zeros of 0 = O.
Recalling eqn (62), we find that there are only two admissible roots (0 ~ m ~ I) m* and
m** ofn = 0:

m* = (J2-n2-n)/2

m** = (3-5n+O +n)J(2n2-4n+3))/(2(3-n)).

(65a)

(65b)

Therefore, when m increases from zero, n becomes positive when m** > m > m* and
negative again when m > m**. However, only m* satisfies the original eqn (59). It can be
shown that

dm*(n)/dn ~ 0,

and m* changes monotonically from I to 0 when n changes from - 1 to I.
The restrictions (58) are satisfied for n = 0 if and only if m < mO, where

(66)
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(67)

and one can show that m* < mO < m** for n2 < 1. Therefore, to find the critical speed, we
confine ourselves to the admissible unstable case,

m* < m < mO. (68)

Recalling that n defined by eqn (51) depends upon the values of material parameters A and
B, we consider three values of n, namely, n = 0, 1/2 and -1/2. For n = 0, we get

For n = 1/2,

For n = -1/2,

I
m* = - ~ 0.71, mO = 0.75, m** = (3+)3)/6 ~ 0.78.

.j2

m* ~ 0.37, mO ~ 0.44 and m** ~ 0.47.

m* ~ 0.86, mO ~ 0.94 and m** ~ 0.95.

(69)

(70)

(71)

For each of these three cases, the interface is found to be stable for m < m* and unstable
form* < m < mO.

Thus, we conclude that there is a nonvanishing range (m*,m) of values of m for which
the interface becomes morphologically unstable; the value of mdepends upon the material
being studied; this is depicted schematically in Fig. 4. Therefore, the critical value of the
propagation speed is given by m*. The value of m* approaches zero as n -+ I, which will be
the case for B « A.

We now briefly discuss the case of infinite long-wave perturbations with k = 0 for the
general case. It follows from eqns (32) that

i=~=P=~=O (7~

w = -r(±J1'(£;) - VoJP)IJP, w = -s(VoJP±J1'(£;))IJP (73)

and the interface becomes unstable when and only when the" -" sign is chosen in eqn
(73). Using eqns (72) and (73), from eqns (46) one can derive the following:

1'(£;) +p V6 = 0,

which cannot hold, thereby implying that there is no solution of eqns (46). Hence, the
interface is always stable against infinite long-wave perturbations. This conclusion is inde
pendent of condition (48).

5. CONCLUSIONS

We have used the Mullins and Sekerka method to analyse the morphological stability
of a steady planar domain wall propagating in a ferroelastic material undergoing plane
strain deformations. The material on the two sides of the domain wall is in different uniform
states of deformation, which may be thought of as representing two different phases of the
ferroelastic material. After having derived the general equations characterizing the stability
of the propagating interface, specific results are obtained for a trilinear material for which
the nonlinear part of the stress-strain curve is trilinear with two rising stable parts having
the same slope, connected by an unstable part.
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The straight interface is found to be morphologically stable against infinite long-wave
perturbations. For a class of materials for which the material parameters satisfy the relation
(48), our results show that there is one special value of m, namely m* given by eqn (65a),
such that the interface is stable when m < m* and becomes unstable as soon as m exceeds
m*. Therefore, m* is the critical value for interface stability. Thus, the morphological
stability of a propagating domain wall in a ferroelastic material depends on its propagation
speed.
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